

PCSK9-Inhibition: Einsatz in Klinik und Praxis

Wolfgang Koenig und Veronika Sanin

WK: Conflict of Interest (COI) - Disclosures

- Honorar für Vorträge: AstraZeneca, Novartis, MSD, Amgen, Sanofi, Actavis, Berlin Chemie
- Mitglied in Advisory Boards: Novartis, Pfizer, The Medicines Company, Amgen, AstraZeneca, MSD, Kowa
- Teilnahme an klinischen Studien: LEADER (Novo Nordisk), CANTOS (Novartis), FOURIER, GLAGOV (Amgen), OPTIONS I und II (Sanofi/Regeneron), SPIRE (Pfizer), CAIN III (MHICC), PROMINENT (Kowa), DalGene (DalCor), COLCOT (MHICC)
- Forschungsunterstützung: Abbott, Roche Diagnostics, Beckmann, Singulex
- Aktienbesitz pharmazeutischer Unternehmen: keine

Gliederung

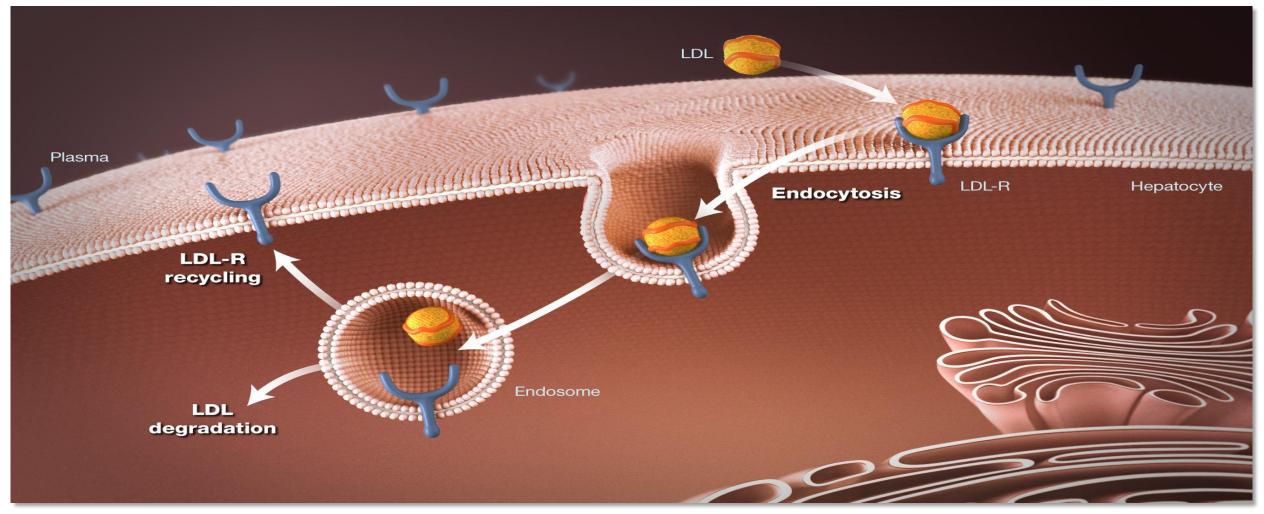
Hintergrund

Patientengruppen

- 1. Hochrisikopatienten, die den LDL Zielwert nicht erreichen
- 2. Patienten mit familiärer Hypercholesterinämie
- 3. Patienten mit Statinintoleranz

Zusammenfassung

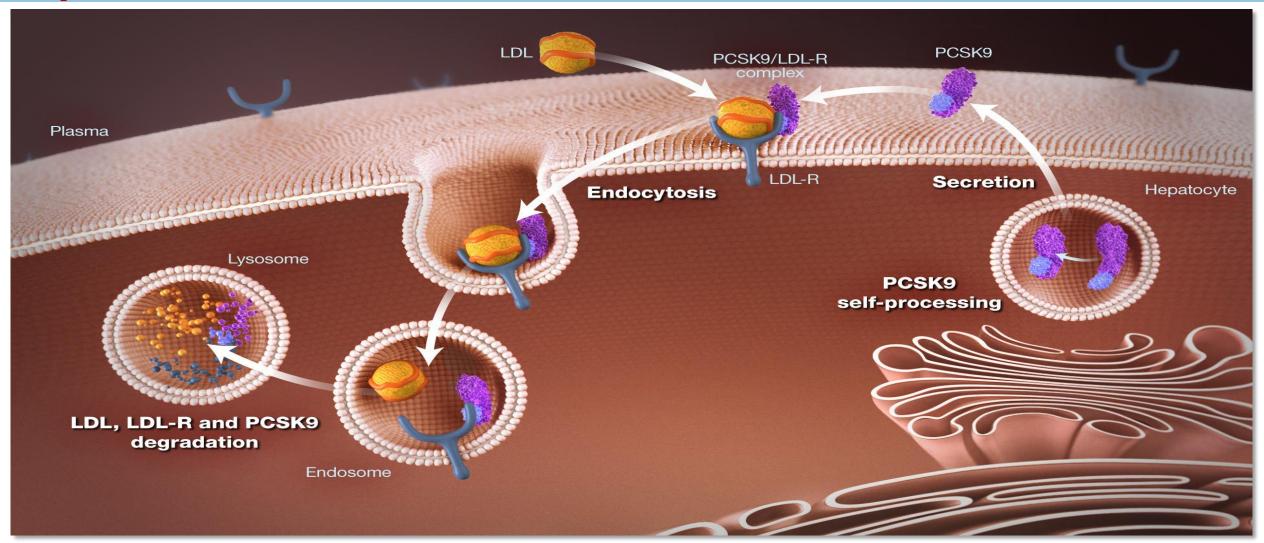
Proprotein Convertase Subtilisin/kexin 9



- > PCSK9 wurde 2003 als Regulator des hepatischen LDL-R entdeckt
- Plasmatisches PCSK9 bindet an den LDL-R, reduziert das Recycling, führt zu einer effektiven Downregulation der LDL-R Aktivität und erhöht das Plasma LDL-C.
- Personen mit Gain-of-Function Mutationen haben h\u00f6here Plasma LDL-C und ein erh\u00f6htes KHK Risiko, w\u00e4hrend Personen mit Loss-of-Function Mutations niederigere Plasma LDL-C und ein geringeres KHK Risiko besitzen.
- PCSK9 Spiegel nehmen unter Statin Therapie zu
- PCSK9 erscheint als ein attraktives neues Target zur Therapie der Hypercholesterinämie.

1Abifadel M et al. Nat Genet 2003;34:154-156 2Cohen et al. N Engl J Med 2006. 354;1264-72

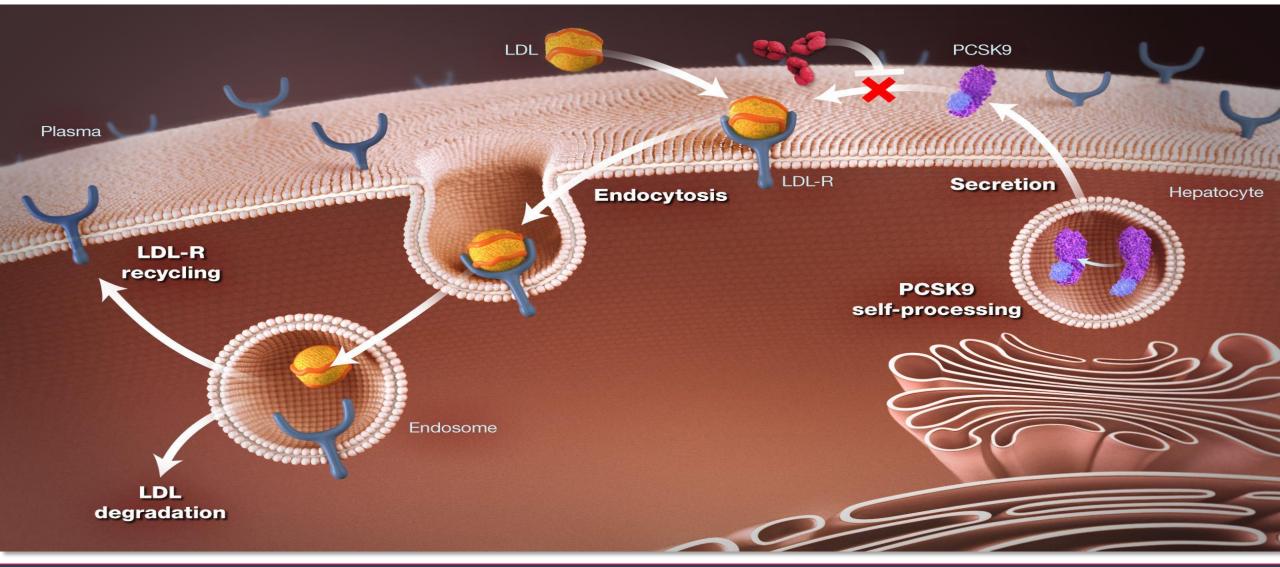
LDL-R spielen eine Schlüsselrolle in der Regulation der Plasma LDL-C Konzentration


1. Brown MS, Goldstein JL. Proc Natl Acad Sci USA. 1979;76:3330-3337.

2. Steinberg D, Witztum JL. Proc Natl Acad Sci U S A. 2009;106:9546-9547.

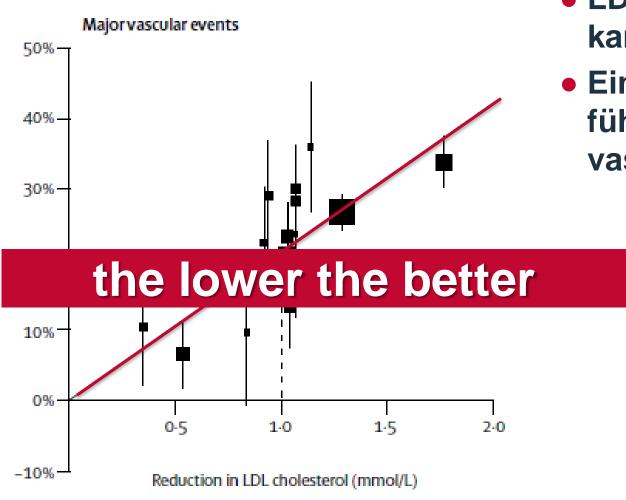
3. Goldstein JL, Brown MS. Arterioscler Thromb Vasc Biol. 2009;29:431-438.

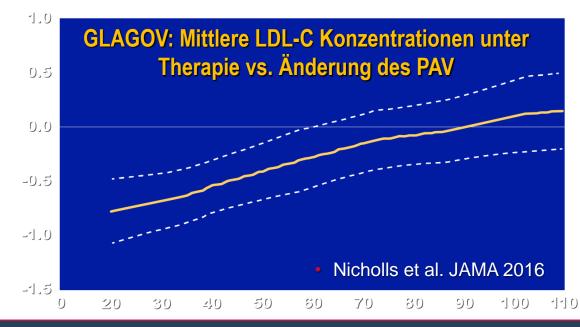
PCSK9 reguliert die Expression von hepatischen LDL-Rs an der Zelloberfläche



1. Qian YW, Schmidt RJ, Zhang Y, et al. J Lipid Res. 2007;48:1488-1498.
2. Horton JD, Cohen JC, Hobbs HH. J Lipid Res. 2009;50(suppl):S172-S177

Anti-PCSK9 mABs blockieren die PCSK9/LDL-R Interaktion und senken LDL-C


PROFICIO (Amgen) Phase 3 vs ODYSSEY (Sanofi/REGN)


_					
	Combo- therapy	laplace	N = 1 895	Combo I/II	Choice 1 N = 700
	Mono- therapy	mendel	N = 614	Mono N = 100	
	Statin- intolerant	gauss	N = 307/100	Alternative N = 250	
	HəFH	rutherford	N = 329	FH I/II and High N = 826	
	HoFH	tesla taussig	N = 49/125	PCSK9 GOF N = 13	
	Long-term safety and efficacy	descartes	N = 901	Long-Term N = 2 100	
	Open-label Extension	~ Sler	N = 4 465	OLE N = 1 200	
	Sekundär prävention	fourier	N = 27 500	Outcomes N = 18 000	
	Athero	glagov	N = 950		

Hintergrund

- LDL-Cholesterin stellt einen zentralen kardiovaskulären Risikofaktor dar.
- Eine Senkung des LDL-C um 40mg/dl führt zu einer relativen Risikoreduktion vaskulärer Ereignisse um 21%

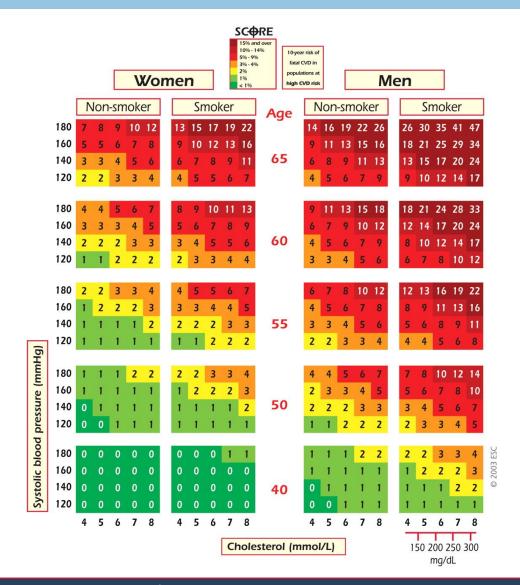
Unmet medical needs

- Leitliniengerechte LDL-C- Zielwerte meist nicht erreicht
- Familiäre Hypercholesterinämie
- Statinunverträglichkeit

08.02.2017

Gliederung

Hintergrund


Patientengruppen

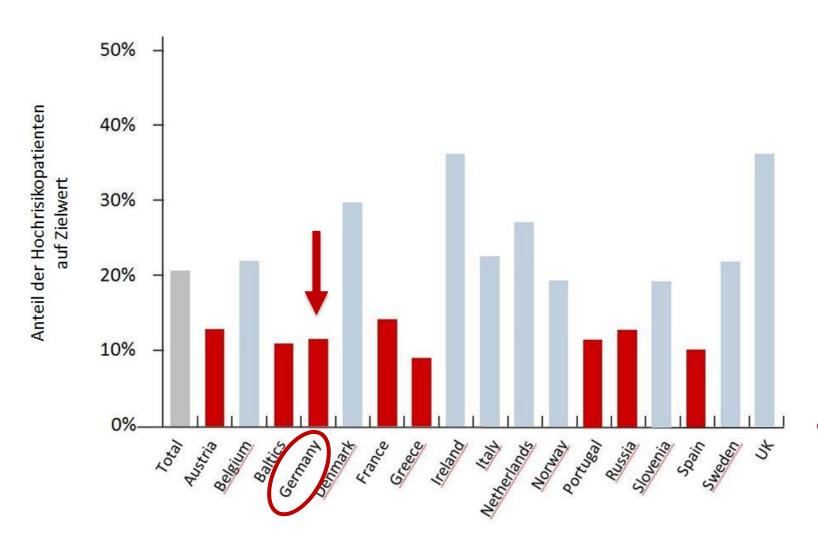
- 1. Hochrisikopatienten, die den LDL Zielwert nicht erreichen
- 2. Patienten mit familiärer Hypercholesterinämie
- 3. Patienten mit Statinintoleranz

Zusammenfassung

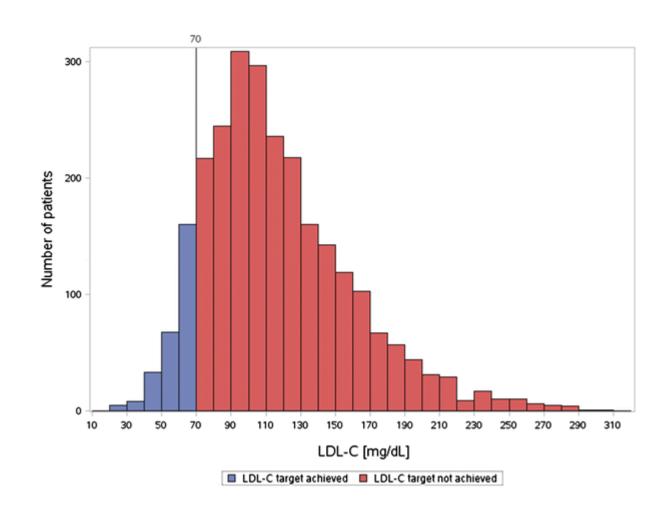
08.02.2017

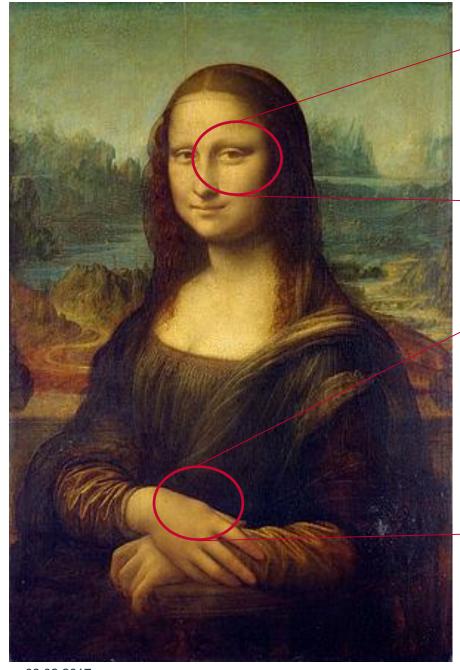
1. Identifikation von LDL-Hochrisiko-Patienten

 LDL-Zielwert hängt vom individuellen kardiovaskulären Gesamtrisiko ab!



Empfehlung	Empfehlungsgrad	Evidenzlevel
Bei Patienten mit einem sehr hohen kardiovaskulären Risiko (bestehende kardiovaskuläre Erkrankung, Typ-2 Diabetes, Typ-1-Diabetes mit Organschaden, moderate/schwere chronische Nierenerkrankung oder ein SCORE Level > 10%): < 70 mg/dl (<1,8 mmol/l) oder eine 50% Reduktion wenn der Ausgangs-LDL Wert zwischen 70 und 135 mg/dl liegt	I	В
Bei Patienten mit einem hohen kardiovaskulären Risiko (Akkumulation mehrerer Risikofaktoren und /oder eine SCORE Level >5% <10%): <100 mg/dl (<2,5 mmol/l) oder eine 50% LDL-Reduktion wenn der Ausgangswert zwischen 100 und 200 mg/dl liegt	I	В
Bei Patienten mit einem niedrigen oder moderaten kardiovaskulären Risiko (SCORE Level >1 bis <5%): <115 mg/dl (<3,0 mmol/l)	lla	С




 Rote Balken kennzeichnen Länder mit einer Zielwerterreichung < 15%

LDL-C-Zielwerte werden mit Atorvastatin in der Praxis selten erreicht

90% der Hochrisikopatienten in Deutschland erreichen ihren Zielwert von 70 mg/dl nicht!

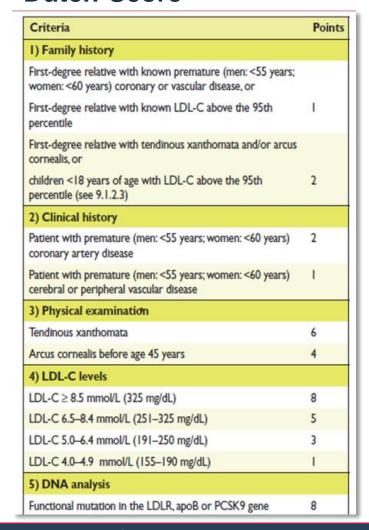
• Familiäre Hypercholesterinämie

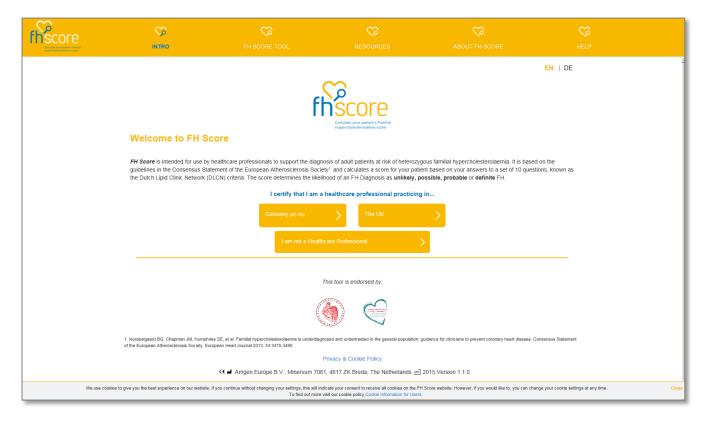
08.02.2017

Technische Universität München

2. Patienten mit Familiärer Hypercholesterinämie

- Häufigste angeborene Stoffwechselerkrankung (autosomal dominant)
- Ätiologie: Mutationen in LDL-Rezeptor, Apo-B-100, PCSK-9
- UNTERDIAGNOSTIZIERT!
- Bei HeFH > Kardiovaskuläre Risiko 10fach erhöht!
- Prävalenz:
 - Homozygote FH: 1: 1 Mio. LDL-Werte: 1000 mg/dl
 - Heterozygote FH: 1:200/300 LDL-Werte: 190-500 mg/dl
- Klinik:
 - LDL-C > 190 mg/dl
 - Xanthome, Arcus corneae
- Therapie:
 - Hochdosierte Statintherapie
 - PCSK9- Inhibitoren
 - Lipid- Apherese




08.02.2017 | 17

Diagnose: Familiäre Hypercholesterinämie

Dutch-Score

https://www.fhscore.eu

LDL-Cholesterin > 190 mg/dl (4,9 mmol/L)

- Positive Familienanamnese
 - Familienangehörige I° mit LDL-C >190 mg/dL oder
 - Vorzeitiger KHK (Frauen <60 J, Männer <55 J oder
 - mit Xanthomen

oder

- Nachweis von tendinösen Xanthomen oder
- Arcus cornea < 45 Jahre

Klinische Diagnose FH

LDL-C- Senkung:

- < 100 mg/dl für alle Patienten mit FH</p>
- < 70 mg/dl bei FH mit klinischen Atherosklerosemanifestationen</p>

Genetische Diagnostik

LDL-R, ApoB-100, PCSK9

Gliederung

Hintergrund

- Patientengruppen
 - 1. Hochrisikopatienten, die den LDL Zielwert nicht erreichen
 - 2. Patienten mit familiärer Hypercholesterinämie
 - 3. Patienten mit Statinintoleranz

Zusammenfassung

3. Patienten mit Statinintoleranz

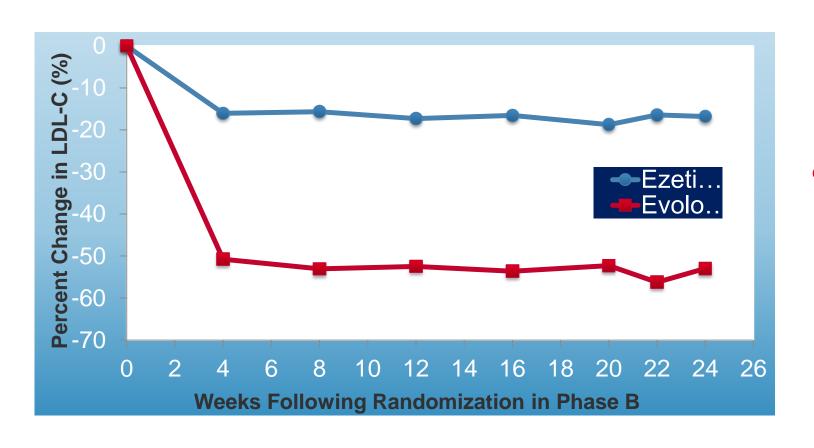
- Prävalenz: mind. 5-10%
- heterogene Ätiologie
- Rhabdomolyse (1: 100 000)
- proximale, symmetrische Muskelschmerzen, meist ohne CK-Erhöhung
- typischerweise 4-6 Wochen nach Therapiebeginn

Nach Änderung des Statinpräparats / Dosierung / Einnahmefrequenz können 90% der SAMS-Patienten mit Statin behandelt werden!

08.02.2017

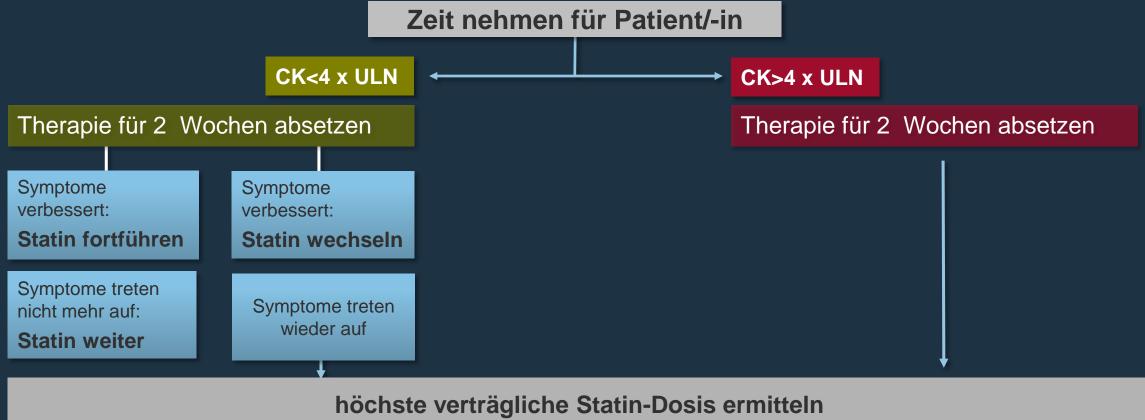
klinische Symptomatik	Punkte			
Lokalisation/Verteilung				
symmetrisch Hüftbeuger/Oberschenkel	3			
symmetrisch Wade	2			
symmetrisch Schultergürtel	2			
unspezifisch asymmetrisch, intermittierend	1			
zeitlicher Zusammenhang mit Beginn der Statin-Einnahme				
Symptome nach < 4 Wochen	3			
Symptome nach 4–12 Wochen	2			
Symptome nach > 12 Wochen	1			
nach Absetzen				
Besserung innerhalb < 2 Wochen	2			
Besserung innerhalb 2–4 Wochen	1			
keine Besserung > 4 Wochen	0			
Reexposition				
Symptome treten innerhalb von < 4 Wochen wieder auf	3			
Symptome treten innerhalb von 4–12 Wochen wieder auf	1			

Diagnose Statin-assozierter Muskelbeschwerden


- 9-11 P. wahrscheinlich
- 7-8 P. möglich
- <7 P. unwahrscheinlich</p>

08.02.2017 | modifiziert nach Rosenson et al 22

GAUSS-3:


Wirksamkeit und Verträglichkeit von Evolocumab bei Patienten mit Statinintoleranz

 Evolocumab reduziert im Vergleich zu Ezetimib LDL-C um weitere 37-38%!

andere Ursachen für Muskelbeschwerden oder Interaktionen ausschließen

Statin wechseln, mit niedriger Dosis beginnen, evt. alternierende Dosierung

LDL-C Therapieziel erreichen:

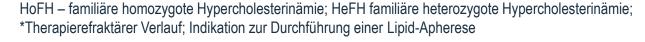
Kombinationstherapie mit Ezetimib oder Gallensäureresorptionsinhibitor in Betracht ziehen

alternative Option PCSK9-Inhibitoren

Definition LDL-Zielwert, Riskoabschätzung

Beschluss GBA: 2. Juni 2016

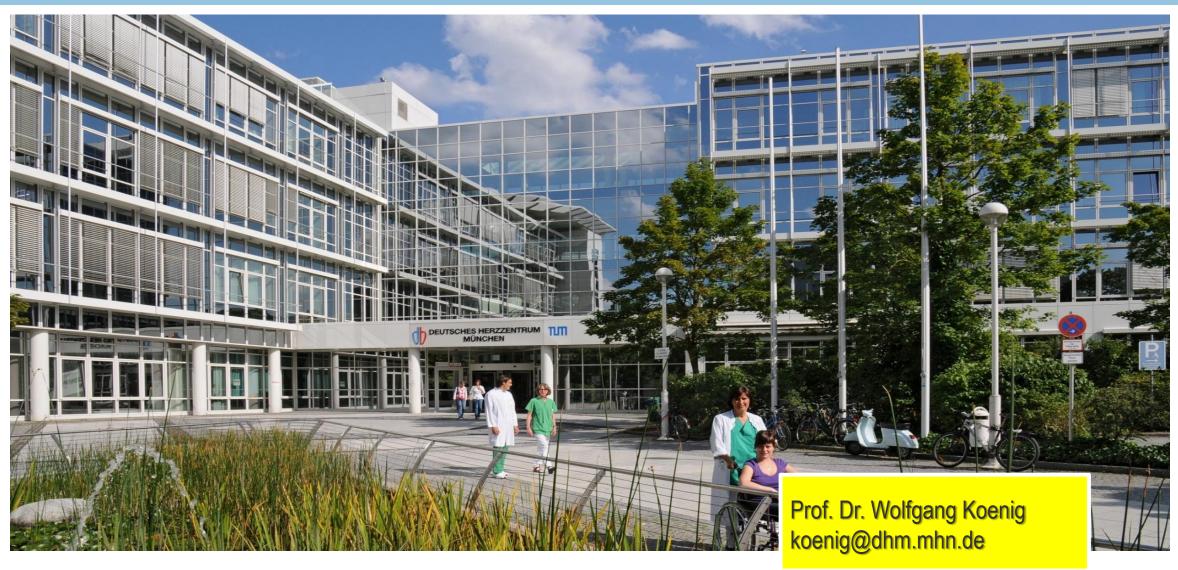
• Für welche Patienten ist Evolocumab verordnungs- erstattungsfähig?


Patienten mit HoFH oder HeFH, bei denen medikamentöse und diätische Optionen zur Lipidsenkung ausgeschöpft worden sind

Patienten mit nicht ausreichend gesenktem LDL-C Wert*, unter max. diätetischer und medikamentöser lipidsenkende Therapie (grundsätzlich dokumentiert über einen Zeitraum von 12 Monaten)

 Therapie muss durch Fachärzte der Inneren Medizin (Kardiologie, Angiologie, Nephrologie, Endokrinologie, Diabetologie) eingeleitet werden

Zusammenfassung



- Der individuelle LDL-C Wert hängt vom kardiovaskulären Riskioprofil ab
- Es gilt : "the lower the better; the earlier the better"
- LDL-C Zielwert (<70 mg/dL) wird trotz Statintherapie bei ~90% der Patienten nicht erreicht
- Familiäre Hypercholesterinämie ist häufig!
- Nach Änderung des Präparats -Dosierung- oder Einnahmefrequenz können
 90% der Patienten mit SAMS mit einem Statin behandelt werden!

08.02.2017

Vielen Dank für Ihre Aufmerksamkeit!

Т

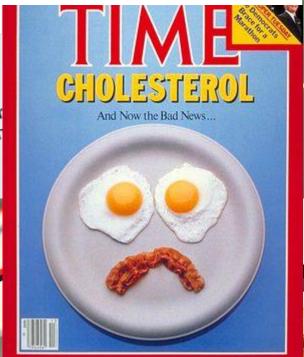
Cholesterin?

PCSK9 Inhibition: A Revolution in **Cholesterol Therapy**

This activity is supported by an educational grant from

Technische Universität München

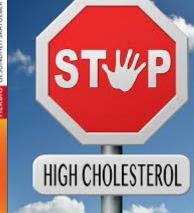
THIS NEW **CHOLESTEROL** DRUG MAY BE **WORSE THAN STATINS**



Lipidsenker

PCSK9-Hemmer: Statine waren gestern

APOTHEKE ADHOC, 07.04.2016 12:22 Uhr


CHOLESTERIN **BÖSEWICHT ODE** SÜNDENBOCK?

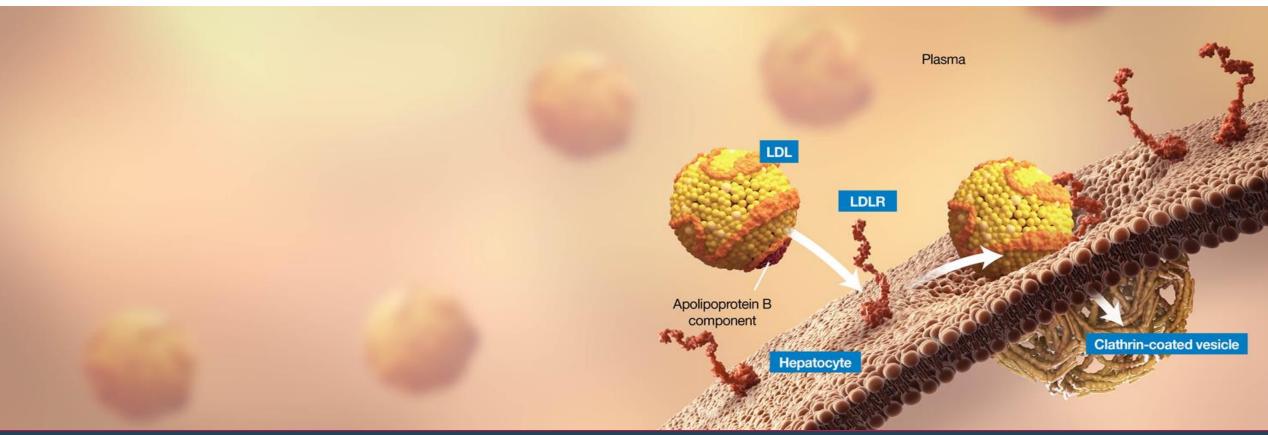
DIE WAHRHEIT ÜBER CHOLESTERIN **ARTERIOSKLEROSE**

PCSK9 INHIBITOR

RACE

Dyslipidemia Management Beyond Statins: Will PCSK9 Inhibition Trigger a Revolution?

Christie M. Ballantyne MD Professor of Medicine Chief, Sections of Cardiovascular Research and Cardiology Baylor College of Medicine


Marja-Riitta Taskinen MD Professor of Medicine Emerit

Heart and Lung Centre Cardiovascular Research Uni Helsinki University Central He Clinical Research Unit

Die neue Revolution: PCSK9- Inhibitoren

Warum?

08.02.2017 | 30