

Klinikum Coburg

Device-detected Vorhofflimmern: Wann muss antikoaguliert werden?

Disclosures

Speakers bureau, consultant, and/or research support:

- Biotronik, Medtronic, SJM, BSC, Sorin
- Boehringer Ingelheim, Bayer
- Pfizer/Bristol Myers Squibb
- Daiichi Sankyo
- Siemens

Prävalenz von Vorhofflimmern: hoch und zunehmend!

REGIOMED C KLINIKEN

Klinikum Coburg

Die am häufigsten anhaltend auftretende kardiale Arrhythmie ¹

Mmhhhh

https://www.medtronicacademy.com/pdf/couldatrial-fibrillation-be-cause-your-stroke

1,8 Millionen

Menschen in Deutschland leiden an AF²

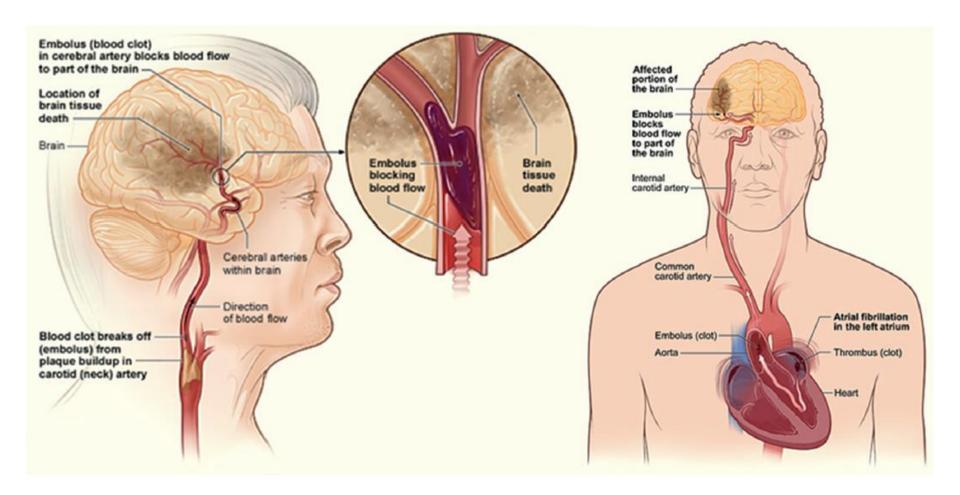
Konsequenzen für die Patienten: 3,4

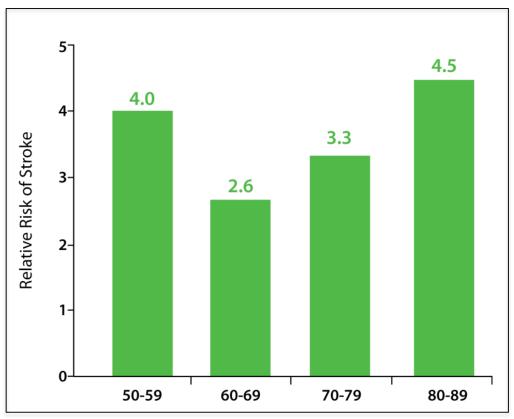
- Verringerte Lebensqualität
- Erhöhtes Schlaganfallrisiko
- Erhöhtes Risiko für Herzinsuffizienz

Behandlung

Bei Patienten mit Vorhofflimmern reduzieren Antikoagulantien das Risiko eines Schlaganfalles um 80% und somit ist deren Einnahme unbedingt empfohlen.^{5,6,7}

Nach einem nicht-kardioembolischen ischämischen Stroke oder TIA ist Aspirin empfohlen^{5,6}


Left Atrial Thrombus in Atrial Fibrillation and Stroke



Mechanismus von Schlaganfällen bei Vorhofflimmern

Age (years) p < 0.001 vs. Non-AF patients

Atrial Fibrillation and Stroke

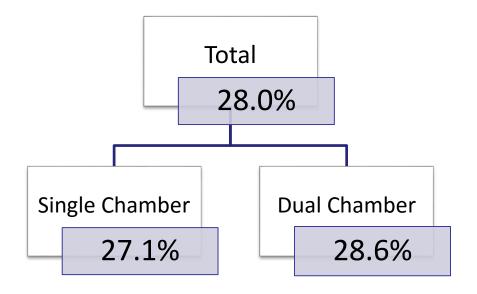
Atrial Fibrillation increases considerably with age

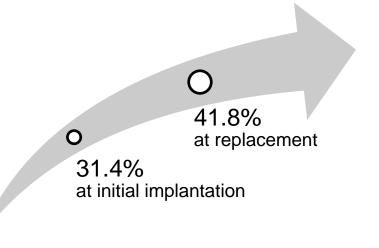
Age Range	Patients with AF
18-64	9.4%
65-74	20.1%
75-84	28.9%
≥ 85	41.3%

AF is associated with a 5-fold increase risk of stroke

In AF-related strokes:

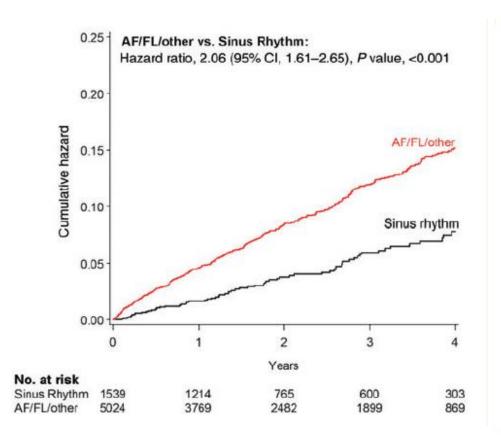
- >50% of survivors have severe deficit
- Secondary strokes are common and occur at a rate of 12% per year

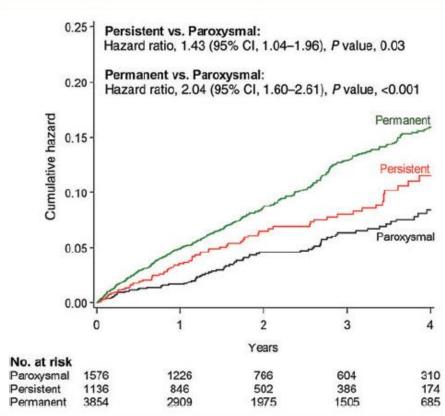

Asberg.S. Stroke. June. 2010. Swedish Stroke Register Lip GYH, Edwards SJ. Thrombosis Res 2006; 118: 321-33 Wolff P et al. Stroke 1991; 22(8):983-988


Mattle HP. Cerebrovasc Dis. 2003;16:3-8

Prävalenz von Vorhofflimmern bei Patienten mit ICD

 Mehr als ein Viertel bei jedem Aggregattyp zum Zeitpunkt der Implantation BIS zu 42 % zum Zeitpunkt eines Aggregatwechsels



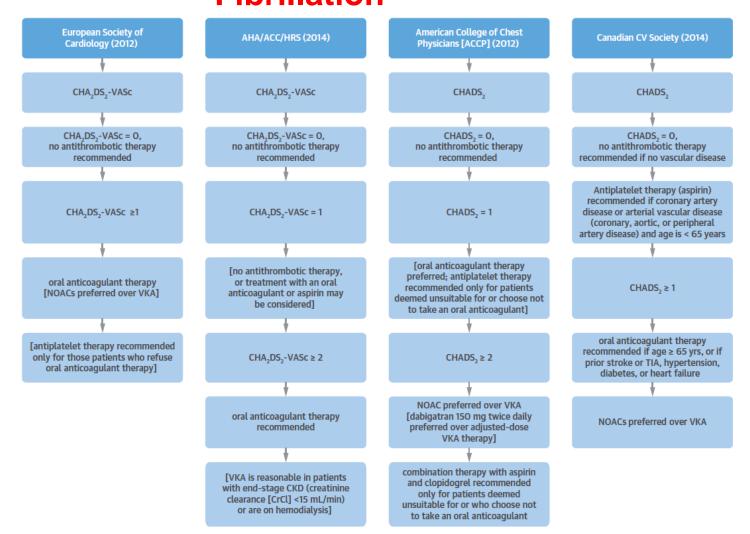


Risk of ischaemic stroke according to pattern of atrial fibrillation: analysis of 6563 aspirin-treated patients in ACTIVE-A and AVERROES

Thomas Vanassche^{1*}, Mandy N. Lauw¹, John W. Eikelboom¹, Jeff S. Healey¹, Robert G. Hart¹, Marco Alings², Alvaro Avezum³, Rafael Díaz⁴, Stefan H. Hohnloser⁵, Basil S. Lewis⁶, Olga Shestakovska¹, Jia Wang¹, and Stuart J. Connolly¹

Vanassche et al; European Heart Journal;2015

Punktewerte der einzelnen Risikokategorien EGIOMED KLINIKEN CHA2DS2VASc-SCORE Klinikum Coburg


Merkmal	Engl. Bezeichnung	Punkte
Herzinsuffizienz	Congestive heart failure	1
Bluthochdruck	Hypertension	1
Alter > 75 Jahre	Age	2
Diabetes mellitus	Diabetes mellitus	1
Vorausgegangener Schlaganfall/TIA*	Stroke/TIA	2
Gefäßerkrankung (z. B. Herzinfarkt)	Vascular disease	1
Alter 65 – 74 Jahre	Age	1
Weibl. Geschlecht (> 65 Jahre)	Sex category	1

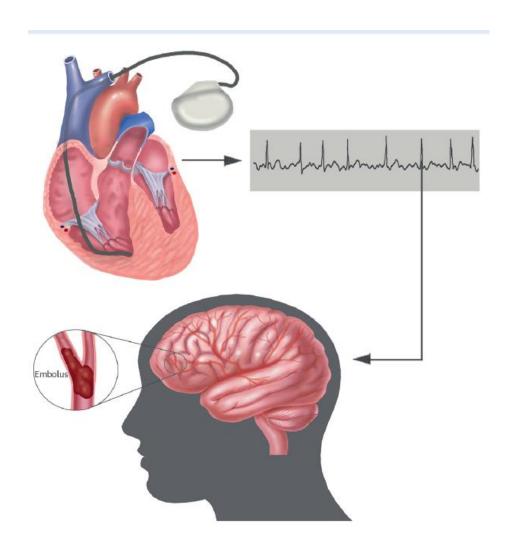
Geringes Risiko	Mittleres Risiko	Hohes Risiko
0-1 Punkt	2 Punkte	3-6 Punkte

^{*}TIA = Transitorisch ischämische Attacke

Comparison of Cardiovascular Society REGIOMED (**) KLINIKEN **Guidelines for OAK in Nonvalvular Atrial Fibrillation**

Chen-Scarabelli et al; J Am Coll Cardiol;65:281–94,2015

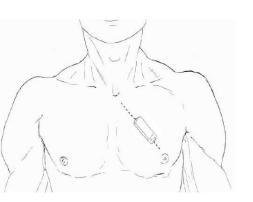
Unterschiedliche Zeitlinien bei okkultem Vorhofflimmern

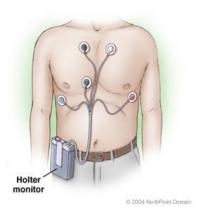


Patient with no AF	asy	Patient develops mptomatic oxysmal AF		AF diagnosed during clinical encounter	
0	0	0	0	0	
	Patient develops risk factors for AF		Paroxysmal AF becomes persistent AF. Pt may develop mild shortness of breath		
Patient with no AF	impl	etection by anted devi Patient suffer index stroke	ice 's	AF diagnosed on prolonged cardiac monitoring with ILR	
0	0	0	0	0	
	Patient develops asymptomatic paroxysmal AF		AF not detected during inpatient EKG monitoring after stroke		

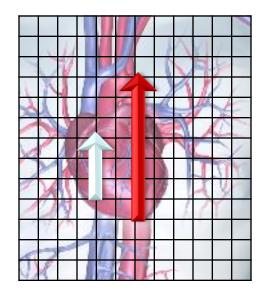
Keach et al. Heart;101:1097-1102,2015

Mögliche Prävention von Schlaganfällen durch Früherkennung von Vorhofflimmern



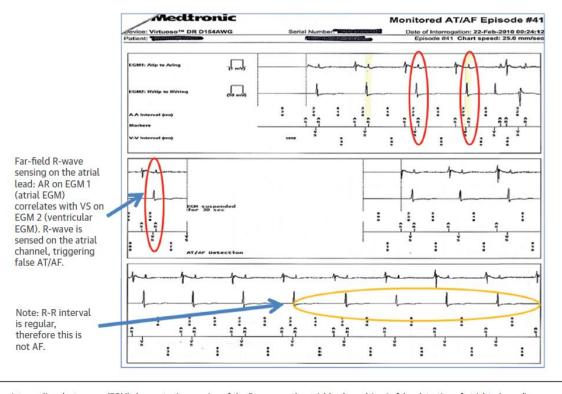

Chen-Scarabelli et al; J Am Coll Cardiol;65:281–94,2015

Vergleich der Monitoring-Strategien für Vorhofflimmern


Neuer implantierbarer kardialer Monitor

- Präzise Arrhythmiediagnostik mittels optimierter Signalqualität
- Ein längerer Wahrnehmungsvektor kann aufgrund der höheren Potentialdifferenz zu einer größeren Signalamplitude und einem günstigeren Signal-Rausch-Verhältnis führen.

Geben Sie hier eine Formel ein.



EGM Representative of AT/AF Due to Far-Field R-Wave Sensing

Intracardiac electrogram (EGM) demonstrating sensing of the R-wave on the atrial lead, resulting in false detection of atrial tachycardia (AT)/atrial fibrillation (AF). AR = atrial refractory event.

Chen-Scarabelli et al; J Am Coll Cardiol;65:281–94,2015

Implantable Cardiac Monitor Strips Exemplifying True and False AT/AF

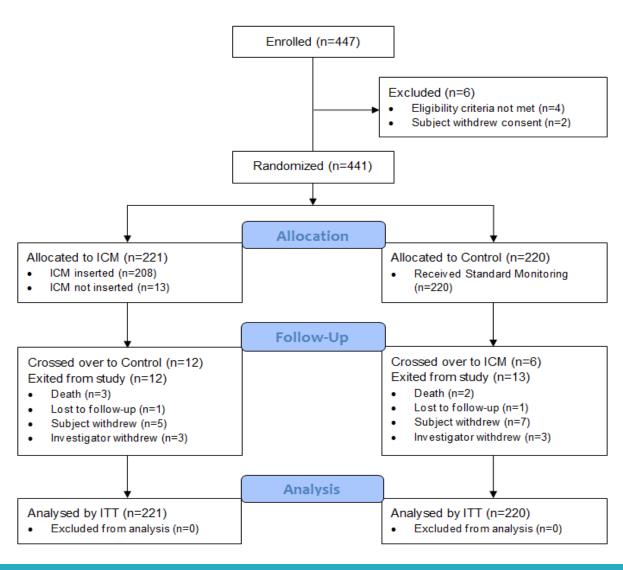
Examples of true and false detection of atrial tachycardia (AT)/atrial fibrillation (AF) by implantable cardiac monitors. False AT/AF detection due to irregular R-R intervals in a patient with frequent premature ventricular contractions (PVC).

Chen-Scarabelli et al; J Am Coll Cardiol;65:281–94,2015

CRYSTAL AF

The NEW ENGLAND JOURNAL of MEDICINE

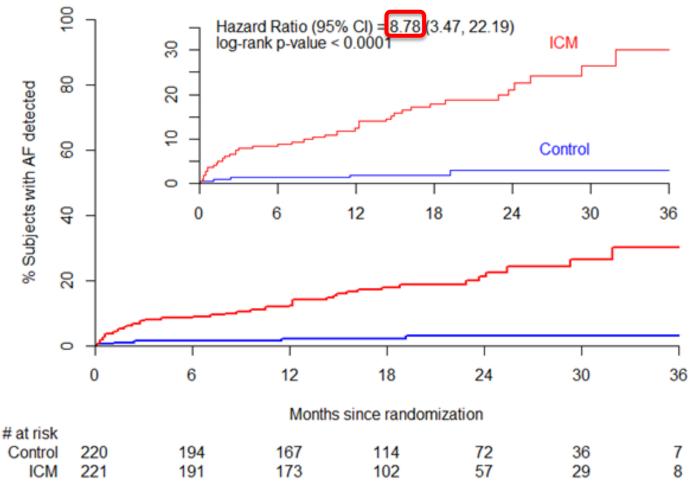
ORIGINAL ARTICLE


Cryptogenic Stroke and Underlying Atrial Fibrillation

Tommaso Sanna, M.D., Hans-Christoph Diener, M.D., Ph.D., Rod S. Passman, M.D., M.S.C.E., Vincenzo Di Lazzaro, M.D., Richard A. Bernstein, M.D., Ph.D., Carlos A. Morillo, M.D., Marilyn Mollman Rymer, M.D., Vincent Thijs, M.D., Ph.D., Tyson Rogers, M.S., Frank Beckers, Ph.D., Kate Lindborg, Ph.D., and Johannes Brachmann, M.D., for the CRYSTAL AF Investigators*

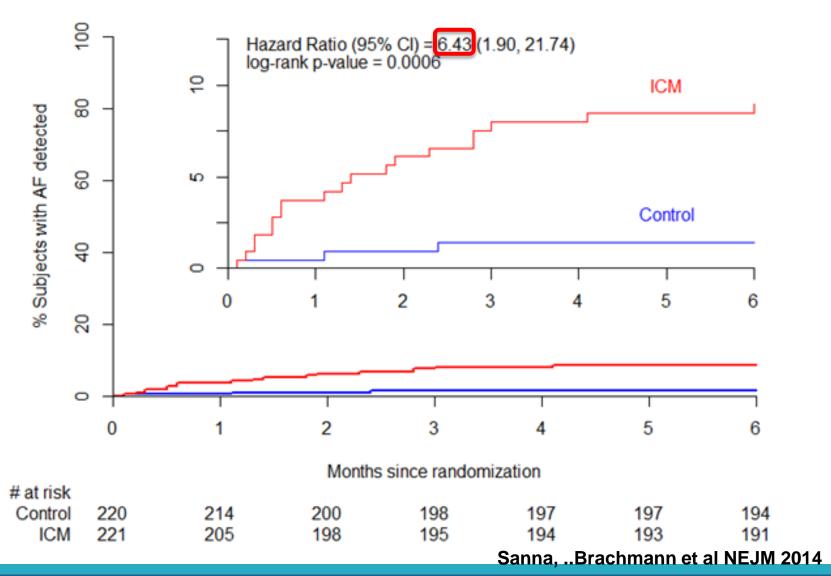
T. Sanna, ... J. Brachmann N Engl J Med;370:2478-86, 2014.

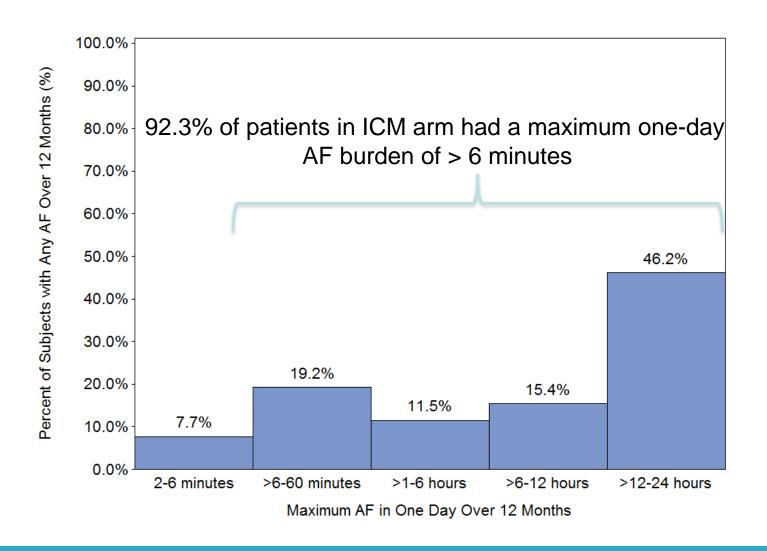
Patient Flow in der CRYSTAL-AF Studie


Methods

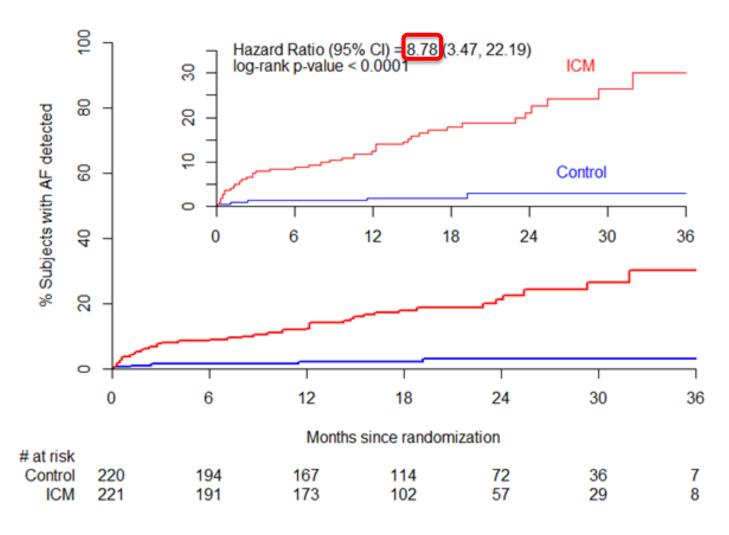
AF defined as an episode of irregular heart rhythm, without detectable p waves, greater than 30 seconds

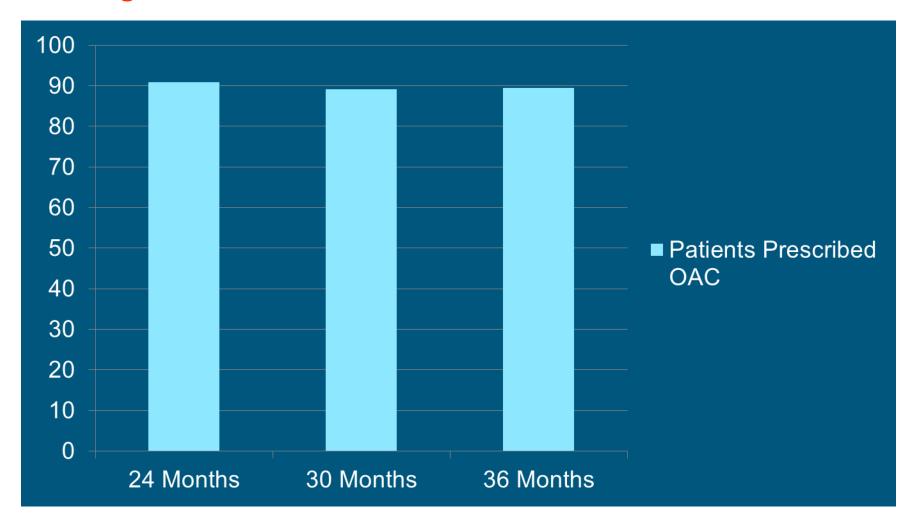
AF episodes were identified by patient's physician and adjudicated by an independent committee


Detektion von Vorhofflimmern nach kryptogenem Schlaganfall mittels implantierbarem Ereignisrekorder


T. Sanna...J.Brachmann; N Engl J Med;370:2478-86, 2014

Primary Endpoint CRYSTAL-AF Study GIOMED (KLINIKEN Detection of AF at 6 months Klinikum Coburg


Atrial Fibrillation Duration in ICM Arm at 12 months (N=29)


Detektion von AF nach 3 Jahren

Clinical Decisions

OAC Usage in AF Patients: Both Arms

Approximately 90% of patients with AF were prescribed OAC

Brachmann et al Circ AE 2016

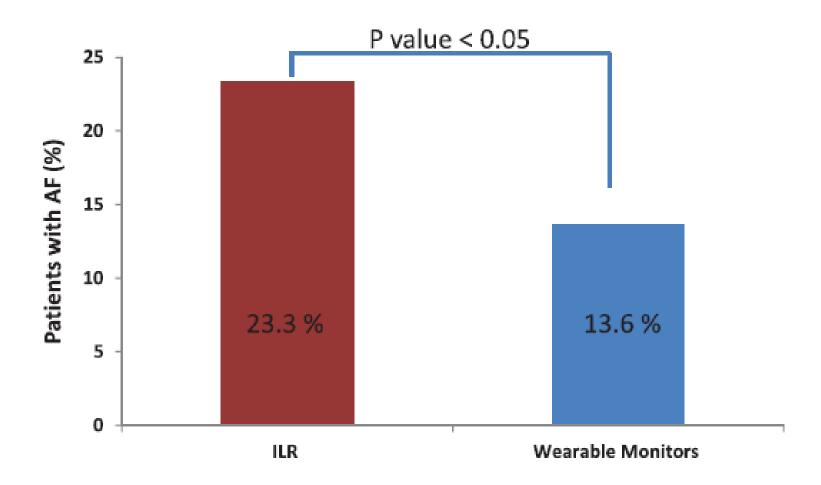
25

Metaanalysis of Outpatient Monitoring in Patients with Cryptogenic Stroke

Table III.

Quality Assessment Scale for the Randomized Controlled Trials Included in the Meta-analysis

		Selection		Performance	Detection	Attrition	
	Was Allocation Adequate?*	Was an Adequate Method of Randomization Described?	Were Groups Similar at the Start of the Study?	•	Was the Outcome Ascertained Blindly?	What Percent was Lost to Follow-Up?	Were All Patients Analyzed in the Group to Which They Assigned?
Gladstone et al. 2014	Υ	Y	Υ	N	N	2.27%	Υ
Higgins et al. 2013	Υ	N	Υ	N	N	0	Υ
Sanna et al. 2014	Υ	Υ	Υ	N	N	0.45%	Υ

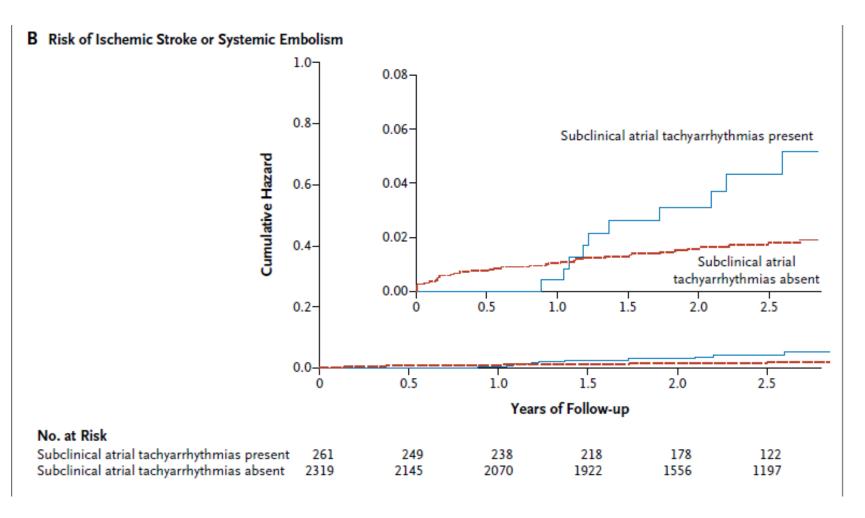

^{*&}quot;Adequate" means the use of central site, numeric code, opaque envelopes, and other appropriate procedures as described by Juni et al.

	Prolonged Mon	itoring	Routine Follo	ow Up		Peto Odds Ratio	Peto Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	Peto, Fixed, 95% CI	Peto, Fixed, 95% CI
Gladstone et al 2014	45	280	9	277	61.9%	4.31 [2.46, 7.56]	
Higgins et al 2013	9	50	1	50	11.5%	5.81 [1.58, 21.33]	
Sanna et al 2014	19	221	3	220	26.6%	4.58 [1.95, 10.80]	
Total (95% CI)		551		547	100.0%	4.54 [2.92, 7.06]	•
Total events	73		13				
Heterogeneity: Chi ² = 0	.17, $df = 2$ (P = 0.9	32); I2 = 0°	%				0.01 0.1 1 10 100
Test for overall effect: Z	= 6.72 (P < 0.000	01)					Favours [Routine F/U] Favours Monitoring

Afzal et al; PACE; 38:1236–1245, 2015

Detection of AF by ILR compared to Wearable Monitors in Patients with Cryptogenic Stroke

Afzal et al; PACE; 38:1236–1245, 2015


M	ear	ı±	SD
	~~	_	

Risk Factor	Patients with AF	Patients Without AF	P Value
Age (years) Hypertension (%) Diabetes mellitus (%)	67.5 ± 4 (106)	59.5 ± 6 (580)	0.01
	63.7 ± 11 (132)	60.9 ± 19.6 (653)	0.72
	17.3 ± 11.8 (127)	15.3 ± 11 (576)	0.72

Afzal et al; PACE; 38:1236-1245, 2015 28

ASSERT-Studie Klinikum Coburg Significance of Asymptomatic Episodes of AF

European Heart Journal (2014) **35**, 508–516 doi:10.1093/eurheartj/eht491

CLINICAL RESEARCH

Atrial fibrillation

Device-detected atrial fibrillation and risk for stroke: an analysis of >10 000 patients from the SOS AF project (Stroke preventiOn Strategies based on Atrial Fibrillation information from implanted devices)

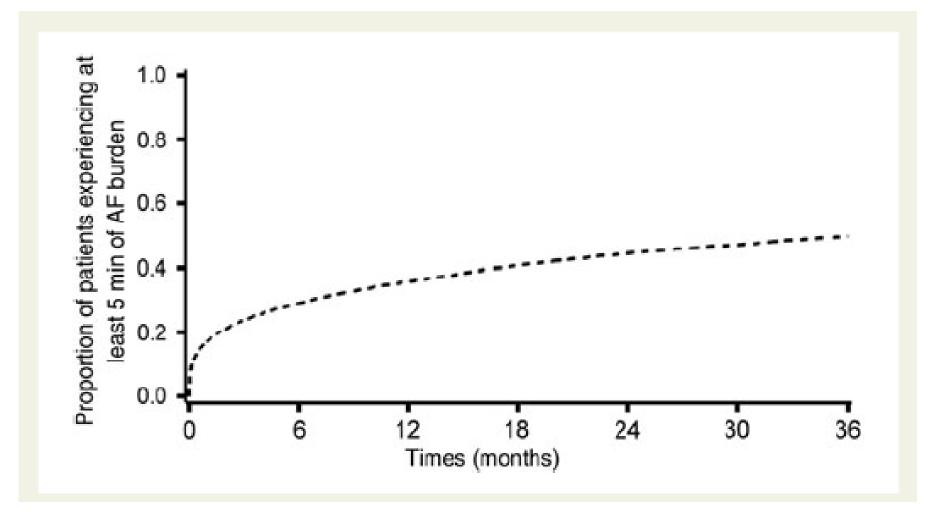
Giuseppe Boriani^{1*}, Taya V. Glotzer², Massimo Santini³, Teena M. West⁴, Mirko De Melis⁴, Milan Sepsi⁵, Maurizio Gasparini⁶, Thorsten Lewalter⁷, John A. Camm⁸, and Daniel E. Singer⁹

¹Department of Experimental, Diagnostic and Specialty Medicine, Institute of Cardiology, University of Bologna, S.Orsola-Malpighi University Hospital, Via Massarenti 9, Bologna 40138, Italy; ²Hackensack University Medical Center, Hackensack, NJ, USA; ³Cardiology Department, San Filippo Neri Hospital, Rome, Italy; ⁴Medtronic Bakken Research Center, Masstricht, The Netherlands; ⁵Department of Internal Medicine – Cardiology, University Hospital Brno, Brno, Czech Republic; ⁶Department of Cardiology, Humanitas Clinical and Research Center, Rozzano-Milano, Italy; ⁷Isar Heart Center Munich, Munich, Germany; ⁸Cardiac and Vascular Sciences, St George's Hospital Medical School, London, UK; and ⁹General Medicine Division, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA

Received 22 March 2013; revised 26 September 2013; accepted 7 November 2013; online publish-ahead-of-print 11 December 2013

Boriani et al; European Heart Journal:35:508-516, 2014

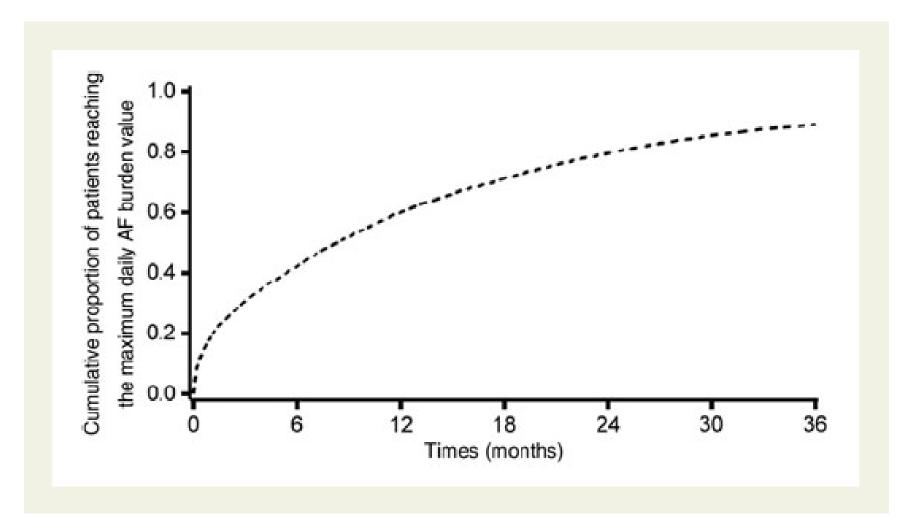
Baseline characteristics by study



	Total $(n = 10016)$	PANORAMA ($n = 3556$)	TRENDS $(n = 2553)$	Clinical Service $(n = 3907)$
Age, median years (IQR)	70 (61, 76)	69 (60, 76)	73 (64, 79)	68 (60, 74)
Male, n (%)	6859 (69)	2096 (59)	1694 (66)	3069 (79)
Diabetes mellitus, n (%)	2537 (25)	896 (25)	817 (32)	824 (21)
Hypertension, n (%)	5896 (59)	2116 (60)	1940 (76)	1840 (47)
Atrial fibrillation, n (%)				
Paroxysmal	1923 (19)	784 (22)	678 (27)	461 (12)
Persistent	478 (5)	91 (3)	48 (2)	339 (9)
Oral anticoagulation, n (%)	1822 (18)	631 (18)	526 (21)	665 (17)
CHADS ₂ group, n (%)				
CHADS ₂ 0-1	4133 (41)	1684 (47)	722 (28)	1727 (44)
CHADS ₂ 2-6	5883 (59)	1872 (53)	1831 (72)	2180 (56)
Prior stroke, n (%)	589 (6)	89 (3)	345 (14)	155 (4)
Device type				
PM	4277 (43)	2726 (77)	1238 (49)	313 (8)
ICD	2004 (20)	404 (11)	822 (32)	778 (20)
CRT	3735 (37)	426 (12)	493 (19)	2816 (72)

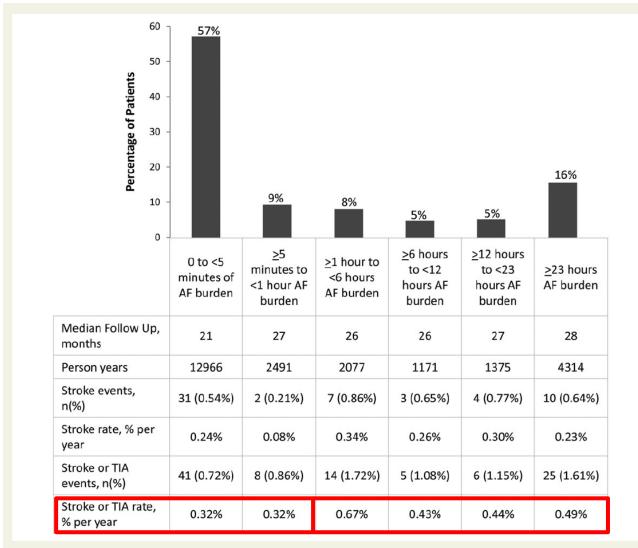
Boriani et al; European Heart Journal;35:508–516, 2014

Zeitabhänige Detektion von Vorhofflimmern mit einer Dauer von mindestens 5 Minuten



Boriani et al; European Heart Journal;35:508-516, 2014

Kumulativer zeitabhängiger Anteil von Patienten mit Detektion von mindestens 1 Stunde Vorhofflimmern



Boriani et al; European Heart Journal;35:508-516, 2014

Verteilung der Patienten nach Dauer der Vorhofflimmerlast und cerebrales Ischämierisiko

Boriani et al; European Heart Journal;35:508-516, 2014

Patienten ohne OAK am Studienbeginn adjustiert für den CHADS, score

	Total	Events	HR for AF burden ≥1 h vs. <1 h (95% CI)	P- value
Stroke	8122	44	2.09 (1.10, 3.96)	0.0239
Stroke + TIA	8122	69	2.05 (1.24, 3.39)	0.0051
Adjusting for CHA	DS ₂ score			
Stroke	8122	44	1.90 (1.00, 3.61)	0.0487
Stroke + TIA	8122	69	1.89 (1.14, 3.12)	0.0135

Boriani et al; European Heart Journal;35:508-516, 2014 35

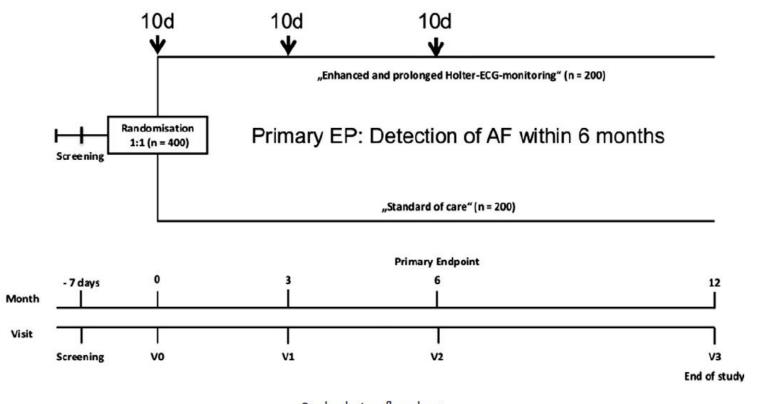
CHADS₂ and Associated Stroke Risk in REGIOMED C KLINIKEN the NRAF and ASSERT Trials

	NRAF			ASSERT			
	n = 1,733	Number of CVAs (94)	Adjusted Stroke Risk	n = 259	Number of CVAs (11)	Adjusted Stroke Risk	
$CHADS_2 = 0$	120	2	1.9 (1.2-3.0)	_	_	_	
$CHADS_2 = 1$	463	17	2.8 (2-3.8)	68	1	2.11 (0.23-18.9)	
CHADS ₂ = 2	523	23	4.0 (3.1-5.1)	119	4	1.83 (0.62-5.4)	

Chen-Scarabelli et al; J Am Coll Cardiol;65:281–94,2015

Comparison of Patient Characteristics Between NRAF and ASSERT Trials

	NRAF	ASSERT (N = 261	Comparison of
	(N = 1,733)	[With Subclinical AT])	Proportions (p Value)
Age, yrs	81	77 ± 7	
CHF	56%	14.9%	< 0.0001
HTN	56%	-	
Male	42%	56.3%	< 0.0001
Female	58%	43.7%	< 0.0001
DM	23%	22.6%	0.9487
Prior CVA or TIA	25%	11.9%	< 0.0001
ASA therapy	31%	61.3%	< 0.0001
Mean CHADS ₂ score	2.1 (without aspirin) 2.3 (with aspirin)	2.2 ± 1.1	0.1711


37

Chen-Scarabelli et al; J Am Coll Cardiol;65:281–94,2015

Early detection of occult atrial fibrillation and stroke prevention

Find-AF Study

Study design flowchart.

38

Weber-Krüger et al; Am Heart J 2014;168:438-45

Find-AF Study

Inclusion criteria

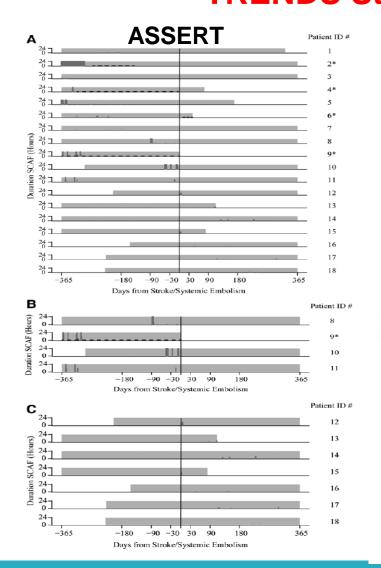
- REGIOMED KLINIKEN
 Klinikum Coburg
- Recent cerebral ischemia defined as stroke (sudden focal neurologic deficit lasting >24 h consistent with the territory of a major cerebral artery and categorized as ischemic) and/or a corresponding lesion on brain imaging
- 2. Stroke symptoms started ≤7 d ago
- 3. Age ≥60 y
- mRS ≤2 (prior to index event)

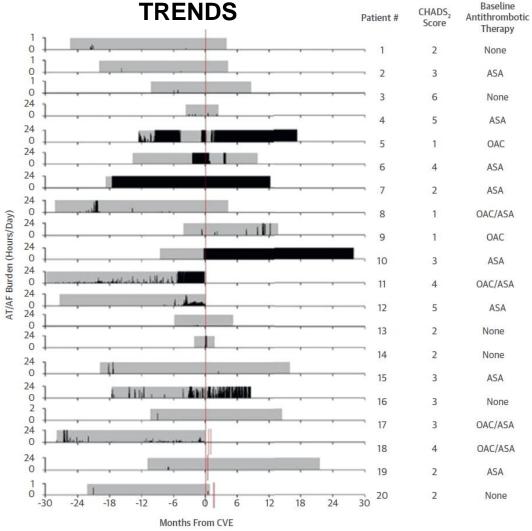
Exclusion criteria

- History of AF/flutter or documented AF/flutter prior to randomization
- 2. Indication for oral anticoagulation at randomization
- 3. Absolute contraindication for oral anticoagulation at randomization
- 4. Intracerebral bleeding in medical history
- Patient scheduled for Holter ECG or cardiac event-recording monitoring ≥48 h
- Carotid artery stenosis of >50% (NASCET) needing revascularization and ipsilateral to ischemic territory
- 7. Implanted pacemaker device or cardioverter/defibrillator
- 8. Life expectancy <1 y for reasons other than stroke (eg, metastatic cancer disease)
- 9. Concomitant participation in another randomized controlled trial

Summary of ongoing trials investigating the safety/efficacy of OAC treatment of occult AF

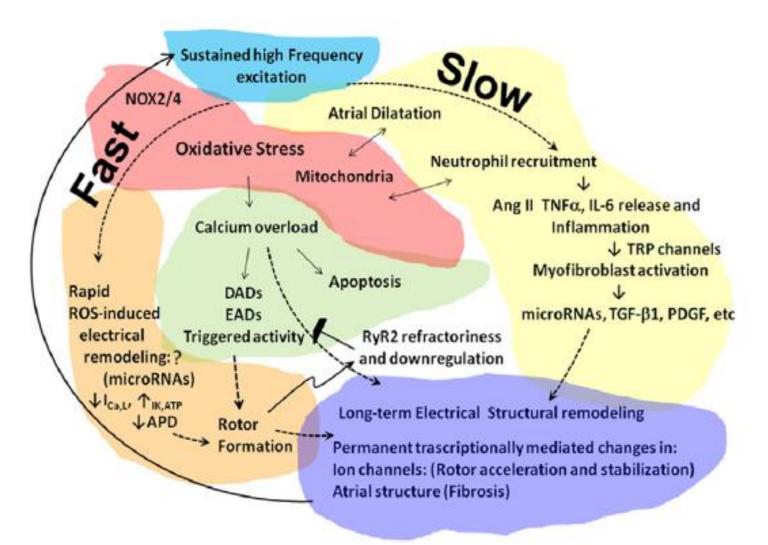
	Population		Interventi	on		Primary o	utcomes	Impact on current understanding
ARTESIA	CHA2DS2-VASc ≥4 with at least a single AHRE ≥175 bpm lasting ≥6 min detected by ILR or intracardiac device No history or ECG evidence of clinical AF		Randomised to either aspirin 81 mg daily (control) or apixaban 5 mg twice daily (intervention)			Incidence of stroke and major bleeding events		Will be the first trial directly investigating the risk/benefit of OAC treatment in the device-detected AHRE population.
STROKESTOP	All persons aged 75 years and 76 years in two Swedish provinces No history of AF		Twice-daily ECG screening+OAC treatment if AF detected (single episode duration >30 s, or 2 or more episodes >10 s)			Incidence of and major events		Will be the first trial investigating population-based screening for occult AF and the effect on stroke prevention
	Population Int		ervention Primary outcomes I		Impact on current understanding			
REVEAL-AF	CHADS2 \geq 3, or \geq 2 +CAD, CKD, OSA Insor COPD ILR No history of AF		thromboembolism		Will further understanding of risk factors for occult AF, ILR for detection of AF >6 min, temporal relationship between AF episode and stroke			
	Age \geq 65 +CHA2DS2-VASc \geq 2 +LA Instead enlargement or elevated p-BNP ILR No history of AF		sertion of AF episode >5 R thromboemboli			Will further understanding of risk factors for occ detection of AF >5 min, temporal relationship b and stroke		
	Population	Intervent	tion		Primary outc	omes	Impact	on current understanding
REACT COM	CHADS2 of 1 or 2, recently implanted Medtronic REVEAL XT loop recorder No permanent AF or recent AF episode lasting >1 h	therapy fo	Rapid initiation of 30 days of NOAC therapy following a remotely detected episode of AF			OAC utilisation, incidence of stroke, death and major bleeding events		nonstrate safety/efficacy of treating paroxysm tent AF with NOAC only during times lly related to AF episodes (other studies have trated a weak temporal relationship between s of AF and stroke)
TACTIC-AF	story of paroxysmal or Withdrawal/reinitiation of NOAC based on remote-monitoring of atrial activity (AT/AF) de) o permanent AF			cardiovascular complications		patients between	nonstrate the safety of OAC cessation in with low AF burden, temporal relationship stroke and AF, effect of weekly remote nterrogation	


03.02.2016


2,2015

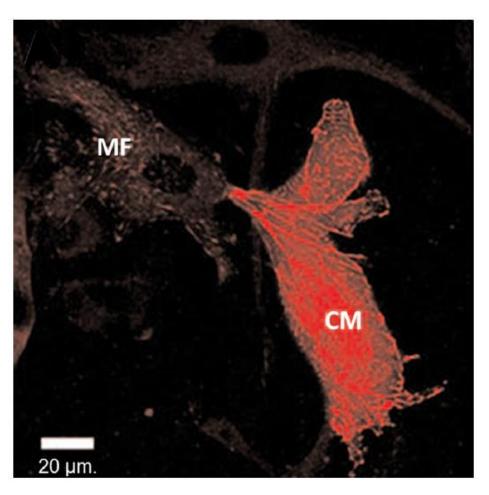
AT/AF Burden Per Day Relative to Onset of REGIOMED KLINIKEN Strokes/TIA/SE From the ASSERT and **TRENDS Studies**

Klinikum Coburg



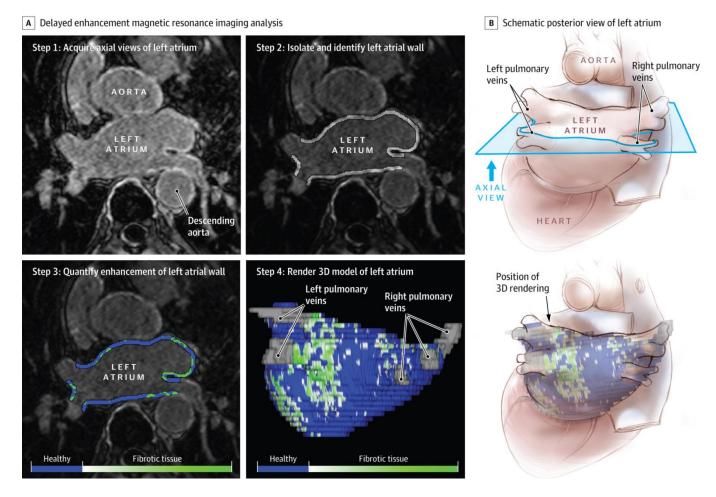
Chen-Scarabelli et al; J Am Coll Cardiol;65:281-94,2015

AF-Induced Remodeling

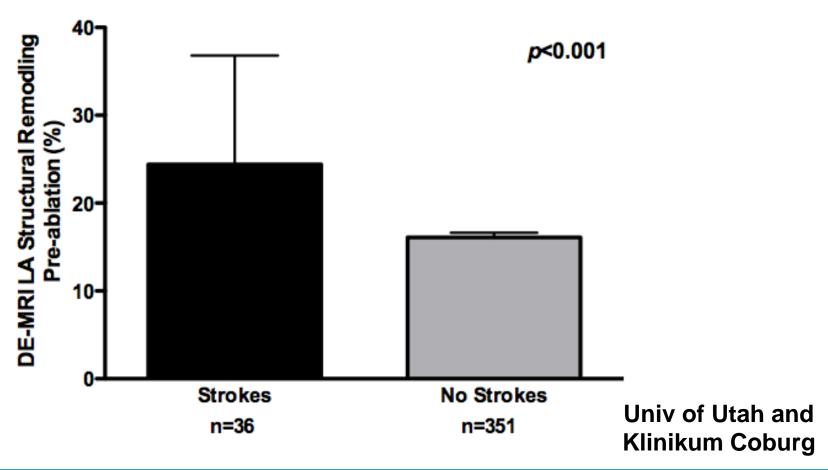


Jalife et al; Trends in Cardiovascular Medicine; 2015

Myofibroblasts Induce Structural Remodeling of Cardiomyocytes



Protein organization at the myofibroblast (MF)-cardiomyocyte (CM) resulting in vinculin reorganization parallel to the direction of the strain induced by the MF


Jalife et al; Trends in Cardiovascular Medicine; 2015

Detektion von linksatrialer Fibrose mittels Gadolinium DE-MRT

Left Atrial Struktural Remodeling REGIOMED (KLINIKEN (Fibrosis) by DE-MRT and Risk of Stroke Klinikum Coburg in Patients with AF

Dacarrett M et al JACC 2011

Fazit für die Praxis

Screening für Vorhofflimmern in Devices erbringt eine signifikante Detektionsrate von Vorhofflimmern. In den aktuellen Leitlinien wird eine Dauer von mindestens 30 s gefordert.

Detektion von Vorhofflimmern ist mit einem erhöhten Risiko für Schlaganfälle/TIA verbunden, das von der Dauer des Vorhofflimmerns, aber auch dem zugrundeliegenden Risikoprofil beeinflusst wird.

Retrospektive Analysen zeigen einen deutlichen Anstieg des Schlaganfallrisikos nach Detektion von mindestens 1 h Vorhofflimmern.

Nach kryptogenem Schlaganfall haben Patienten nach 3 Jahren eine Vorhofflimmerinzidenz von 30%, von denen 90% über 6 Minuten und 65% über 6 Stunden lag. Bei Nachweis von Vorhofflimmern wurde zu 90% mit einer oralen Antikoagulation begonnen.

Bisher konnte kein zuverlässiger Nachweis einer Korrelation zwischen dem Auftreten von Vorhofflimmern und dem konsekutiven zeitnahen Eintreten eines thrombembolischen Ereignisses nachgewiesen werden.

In der Praxis wird die Entscheidung zur oralen Antikoagulation nicht nur von der Dauer, sondern auch von dem Risikoprofil im CHADS-Vasc Score abhängen, vor allem vom Alter und der Anamnese eines Schlaganfalls.

Laufende prospektive Studien werden die Indikationsstellung zur OAK bei Vorhofflimern präzisieren.